
Optimizing	Design	Verification	Using	Machine	
Learning	-	Doing	Better	than	Random

William	Hughes*,	Sandeep	Srinivasan*	,	Rohit	Suvarna*,	
Maithilee	Kulkarni++	

		*	VerifAI	Inc,	++	Xilinx	Inc.			



Agenda

●	Design	Verification	Challenges	
●	Code	Coverage	Example	-	Doing	better	than	Random	
●	Deep-Q-Learning	for	Code	Coverage	Example	
●	Deep-Q-Learning	for	Design	Verification			
●	Test	Case	#1	-	MESI	Cache	Controller	Design	
●	Test	Case	#2	-	RISCV	CVA6	(Ariane)	Future	Direction		
●	Future	Direction	-	ML	for	DV			
●	Conclusion



• 4	Verification	Engineers	per	Design	Engineer*	
• Verification	costs	>	55%	of	Design	Cost	&	Rising*	
• Hard	bugs	found	late	in	the	Project

Hardware Design
VerificationSoftware

• 1.5	Verification	Engineers	per	Developer	
• Security	bugs	found	late	in	Production

Verification	Complexity	Growing	Rapidly

*Source	:	Wilson	research	group	study	2020,		Siemens	EDA

**Source:	Page	3	Design	Defense	Advanced	Research	Projects	Agency

https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/


Verification	Challenges

																											Can	we	do	better	than	Random	and	humans	in	lesser	time	?

Random	Tests Directed	TestsConstrained	Random	,	Directed	
Random,	Feedback	Random

Effectiveness	in	finding	Bugs

Human	Effort

Low High

Low High

VerifAI		Confidential	

A	New	Approach	is	Needed



Code	Coverage	–	Doing	better	than	Random

Total	number	of	States	in	this	example	=						38								~=		6561	
Total	Number	of	Atoms	in	the	Universe	=~	1082							~=	2287	
Total	number	of	States	in	a	GO	game	=							10172						~=	2602	
Total	Number	States	in	a	Small	Microprocessor							~=	22million

Goal:	Learn	how	to	
reach	max	code	depth	
consistently	
➔ Find	best		{	i	,	j	,	k	}

●3	levels	in	a	nested	‘if’	condition,	flows	to	lower	
depths	only	if	the	values	of		{i,j,k}	satisfy	a	certain	
range	constraint	

●Depth	=3	is	a	proxy	for	a	hard	to	reach	condition	
or	state	

●Can	we	train	a	Neural	Network	to	learn	to	
produce	the	best	{i,j,k}	values	without	exhaustive	
random	combinations	(fuzzing*)	?	

●How	does	random	selection	of	{i,j,k}	perform?

*The	term	"fuzz"	originates	from	a	fall	1988	class	project[2]	in	the	graduate	Advanced	Operarng	Systems	class	(CS736),	taught	by	Prof.	Barton	Miller	at	the	University	of	Wisconsin

https://en.wikipedia.org/wiki/Fuzzing#cite_note-fuzz-cs736-2


Code	Coverage	–	Deep-Q-Learning	(DQN)

● 	Q-Learning	is	a	Reinforcement	Learning	Algorithm	(RL)*	

● 	In	Q-Learning	the	goal	is	to	maximize	the	cumularve	discounted	reward	
which	is	given	by	the	following	Bellman	Equaron*:	
	
For	a	given	state	s,	and	ac4on	a	at	4me	t,	with	the	discount	factor	γ.	

● 	At	the	core	of	DQN	are	Q-value	,	where	Q	represents	the	discounted	
future	rewards	for	a	particular	action	from	a	particular	state	

● 	DQN	uses	Deep	Neural	Networks	(DNN)	to	estimate	these	Q-values	when	
the	state	space	becomes	too	large	for	simple	lookup	table	approaches

*Reinforcement	Learning:	An	IntroducCon	Richard	S.	SuEon	and	Andrew	G.	Barto

http://incompleteideas.net/index.html
http://www-anw.cs.umass.edu/~barto/


Code	Coverage	–	DQN	Results

Random

VerifAI-RL

Av
er

ag
e 

D
ep

th
 o

f C
od

e 
R

ea
ch

ed

●We	applied	DQN	-	The	RL	agent	without	any	prior	
knowledge	learns	by	trial	and	error	that	i	should	be	in	
(1,25),	j	in	(25,50)	and	k	in	(50,75)	

●The	results	can	be	seen	on	the	right	with	clears	points	
where	the	agents	performance	goes	to	the	next	level	

●Periodic	exploration	(	 	>	0	)	leads	to	higher	
cumulative	future	reward

ϵ

*Source:	Reinforcement	Learning:	An	Introducron	Richard	S.	Suuon	and	Andrew	G.	Barto

http://incompleteideas.net/index.html
http://www-anw.cs.umass.edu/~barto/


DQN	for	Design	Verification
● 	Use	RL	to	drive	the	input	to	a	Simulator	with	
a	set	of	controllable	knobs		

● 	Optimize	a	given	metric		or	multiple	metrics	
(Coverage,	FIFO	Depths,	VB	Count)	that	
depend	on	the	knobs	settings	

● 	Modeled	as	Markov	Decision	Process	(MDP)	

●Use	a	DQN	(Deep	Q-Network)	to	train	an	RL	
agent	to	to	explore	the	action	space	and	learn	
the	Q-values		

● 	Pre-fill	experience	buffer	to	speed	up	learning	

Experience Buffer 
Prior Ground Truth



Test	Case	#1	-	MESI	Cache	Controller*
● 	MESI	Cache	Controller-	Quadcore	CPU	design	
-	4-way	set	associative	cache	of	size	256	kB	(one	for	each	CPU)		
-	4-bit	offset	
-	12-bit	index	
-	16-bit	tag	

● 	Knobs	(Input	to	testbench	to	generate	constrained	random	sequences)	
	-	16	for	distribution	of	commands	(4	for	each	CPU	-(broadcast	vs	single	read/	write)	
-	12	for	distribution	of	freedom	of	address	(3	for	each	CPU	-	tag/	index.	offset)	

● 	Output	captured	from	testbench	
	-	FIFO	depth	for	each	CPU	at	each	cycle	

● 	Goal	
-	Increase	FIFO	depths	across	all	CPU’s	

* https://opencores.org/project/mesi_isc

https://opencores.org/project/mesi_isc


The	RL	Algorithm	for	Test	Case	#1

●	Initial	Dataset	consist	of	a	set	of	random	knobs	and	their	

average	FIFO	depths	

●This	dataset	is	fed	to	a	DNN	which	learns	the	function	that	
maps	the	knob	settings	to	the	FIFO	depth	

●The	DNN,	once	trained,	can	be	used	to	generate	new	knob	
settings	and	prediction	for	the	target	variable	

●Once	trained,	the	DNN	simulates	the	output	for	any	new	

unseen	setting	of	input	knobs

CPU0	

FIFO

Cmd	arbitration

Cache	CTL

Cache0

CPU1

FIFO

CPU2	

FIFO

CPU3

FIFO

Cache1 Cache2 Cache3

HW	design

CPU cmds 
Rd addr1	
Wr addr2	
NOP	
BrdCast addr3	
…

Checker

Monitors

DV	Environment	



Test	Case	#1-	Simulation	Setup	-	List	of	Knobs

VerifAI		Confidential	

Mbus_addr_cpu0 
(32-bit)

Valid range –  
0 to 32’hFFFF_FFFF

Index bits are [15:4] for 256kB cache with 16 bytes 
cache block size and 4-way set associative. 
tag = [31:16], index = [15:4], offset = [3:0] 
Knob: set individual freedom for each of them. 

Mbus_addr_cpu1 
(32-bit)

Valid range –  
0 to 32’hFFFF_FFFF 

Knob: set individual freedom for each of them. 

Mbus_addr_cpu2 
(32-bit)

Valid range –  
0 to 32’hFFFF_FFFF 

Knob: set individual freedom for each of them.

Mbus_addr_cpu3 
(32-bit)

Valid range –  
0 to 32’hFFFF_FFFF 

Knob: set individual freedom for each of them.

Input Signal Values Explanation of type of control

Mbus_cmd_cpu0 
(3-bit)

Valid values –  
000 to 100

Knob: Distribution of commands 
Weight on commands - NOP, WR, RD, WR_BORAD, 
RD_BROAD

Mbus_cmd_cpu1 
(3-bit)

Valid values –  
000 to 100

Knob: Distribution of commands 
Weight on commands - NOP, WR, RD, WR_BORAD, 
RD_BROAD

Mbus_cmd_cpu2 
(32-bit)

Valid values –  
000 to 100

Knob: Distribution of commands 
Weight on commands - NOP, WR, RD, WR_BORAD, 
RD_BROAD

Mbus_cmd_cpu3 
(32-bit)

Valid values –  
000 to 100

Knob: Distribution of commands 
Weight on commands - NOP, WR, RD, WR_BORAD, 
RD_BROAD

Initial	Random	
Knob	Settings

DUT	Sim

RL	
AGENT

Knob	Settings	
	-		For	Next	Sims

Reward	-		
Avg	FIFO	depth

Simulation	
Results	
	-	Knob	Settings

Simulation	and	DQN	Setup

	Commands	are	entered	into	FIFO	when	
two	or	more	incoming	non-NOP	
requests	are	to	the	same	address



Distribution Shifted to the right

Distribution Shifted  Further to the right

Histogram of Average FIFO Depths

Learning Rate

Average FIFO Depths after 2 iterations

Test	Case#1	Results



Test	Case#2	-	RISCV	CVA6	(Ariane)
● 	RISC-V	OpenSource	design	
	-	64-bit	Ariane	processor	core	
	-	6-stage	pipeline	
	-	In-order	issue,	out-of-order	write-back	

● Data	cache	(D$)	victim	buffer	(VB)	
	-	Data	cache	stores	recently	accessed	data	from	memory	
	-	New	cache	allocations	cause	existing	lines	to	be	evicted	
	-	Modified	evicted	lines	are	held	in	Victim	buffer	
	-	Cache Size – 2 MB, Tag – 44 bit, Index – 12 bit 	

● Design	complexity	of	VB	
	-	Cache	line	eviction	and	memory	write-back	is	complex	
	-	Subsequent	CPU	core	accesses	to	VB	
	-	Snoop	accesses	to	VB	
	-	VB	full	requires	back-pressure	for	cache	refills	

● Output	captured	from	testbench	
	-	average	number	of	victims	and	percent	of	hitting	of	maximum	of	VB	

● Goal	
	-Increase	Victim-Buffer	Counts

VerifAI		Confidential	



VerifAI		Confidential	

tag range Valid range –  0 to 7 Knob: 0 indicates minimum freedom of tag, 7 
indicates maximum freedom of tag 

index range Valid range – 0 to 7 Knob: 0 indicates minimum freedom of index, 7 
indicates maximum freedom of index

Input Signal Values Explanation of type of control

wt_load_store_jump_br
anch

Valid values – 0 to 100 Knob: Distribution of commands 
Weight on commands - (LD/ ST/ JMP/ BRANCH vs 
other non-complex arithmetic instructions)

wt_other_ins Valid values – 0 to 100

wt_loads Valid values – 0 to 100 Knob: Distribution of commands 
Individual Weight on commands between the knob - 
wt_load_store_jump_branch 

wt_stores Valid values – 0  to 100

wt_jumps Valid values – 0  to 100

wt_branches Valid values – 0  to 100

Tag Range Value

0 44’h 0 – 44’h F

1 44’h 0 – 44’h FF

2 44’h 0 – 44’h FFF

3 44’h 0 – 44’h FFFF

4 44’h 0 – 44’h FFFFF

5 44’h 0 – 44’h FFFFFFF

6 44’h 0 – 44’h FFFFFFFFF

7 44’h 0 – 44’h FFFFFFFFFFF

Index Range Value

0 12’h 0 – 12’h 2

1 12’h 0 – 12’h 4

2 12’h 0 – 12’h 8

3 12’h 0 – 12’h A

4 12’h 0 – 12’h C

5 12’h 0 – 12’h F

6 12’h 0 – 12’h FF

7 12’h 0 – 12’h FFF

Test	Case	#2-	Simulation	Setup	-	List	of	Knobs

RL	Agent	
● 	Learns	each	iteration:	which	knobs	impact	
VB	occupancy	

● 	Adjust	knob	settings	for	IG	for	next	
iteration	

● 	Learns	to	generate	settings	which	increase	
victim	counts

RISCV	
Simulator

RL	
AGENT

Reward	
	-	Victim	
			count

Simulation	
outputsGoogle	

Instruction	
GeneratorKnob	Settings	

	-		For	Next	Sims

Initial	Random	
Knob	Settings

Simulation	and	DQN	Setup



Test	Case#2	Results

• Average	VB	occupancy	increases	from	
0.95	to	1.6	axer	just	three	iterarons,	
gain	of	approximately	55%	

• RL	Agent	idenrfies	salient	knobs	(inputs	
to	Google	IG)	and	exploits	them

VerifAI		Confidential	



Test	Case#2	-	Iteration	wise	results



Future	Direction	-	ML	for	DV

●	Reinforcement	Learning	Algorithms	to	handle	large	action	spaces	
(large	number	of	knobs)	is	an	active	area	of	research	

●	DDPG	(Deep	Deterministic	Policy	Gradient)		
●	Soft	Actor	Critic	(A3C)	

●	Explore	Statistical	Algorithms	
● Contextual	Bandit		

●	In	simulation	RL	(online-RL)

VerifAI		Confidential	



Conclusion

●We	have	demonstrated	the	value	of	using	Machine	Learning	
techniques	on	industrial	designs	to	do	significantly	better	than	
constrained	random	methods	(UVM	etc..)	

●Using	RL	for	DV	can	save	months	of	verification	resource	for	
Coverage	Improvement	and	Early	Bug	Finding	

●	DNN’s	provide	a	mechanism	to	fit	non-linear	functions	that	can	
mimic	complex	behaviors	-	even	of	a	simulator	

VerifAI		Confidential	


