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Verification Complexity Growing Rapidly
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**Source: Page 3 Design Defense Advanced Research Projects Agency
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Figure 1. INustration of the rapid increase in resources required for physical design and verification a:
Moore's Law has progressed.

Hardware

* 4 Verification Engineers per Design Engineer*
* Verification costs > 55% of Design Cost & Rising*
* Hard bugs found late in the Project

Software

* 1.5 Verification Engineers per Developer
» Security bugs found late in Production

*Source : Wilson research group study 2020, Siemens EDA
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https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/

Verification Challenges

Y L. fectienessinfinding Bugs >

Random Tests Random, Feedback Random Directed Tests

oo Humentfot >

Can we do better than Random and humans in lesser time ?

< A New Approach is Needed >
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Code Coverage — Doing better than Random

for i in range(num_iterations):

depth = 0

i,j,k =90,0,0

i = random.randint(1,100)

if i in range(1,26):
depth = 1
j = random.randint(1,100)
if j in range(26,51):

depth = 2

k = random.randint(1,100)
if k in range(51,76):
depth = 3

else: \
depth = 2

k = 0 Goal: Learn how to

else: 3 reach max code depth
‘jjegtg =1 consistently
else: => Find best {i,j, k}
depth = 0
i=20

e 3 |levels in a nested ‘if’ condition, flows to lower
depths only if the values of {i,j k} satisfy a certain
range constraint

e Depth =3 is a proxy for a hard to reach condition

or state

e Can we train a Neural Network to learn to
produce the best {i,j,k} values without exhaustive
random combinations (fuzzing™) ?

e How does random selection of {i,j,k} perform?

Total number of States in this example = 38 ~= 6561
Total Number of Atoms in the Universe =~ 1082  ~= 2287
Total number of Statesina GO game = 10172  ~= 2602

Total Number States in a Small Microprocessor ~ ~= 22million

*The term "fuzz" originates from a fall 1988 class project(2! in the graduate Advanced Operating Systems class (CS736), taught by Prof. Barton Miller at the University of Wisconsin
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https://en.wikipedia.org/wiki/Fuzzing#cite_note-fuzz-cs736-2

Code Coverage — Deep-Q-Learning (DQN)

Action a
| l
Agent Environment
t T Reward r :A r' |
State s L s’

e Q-Learning is a Reinforcement Learning Algorithm (RL)*

e In Q-Learning the goal is to maximize the cumulative discounted reward
%(5, 3) =Ex [Rt+1 + ’Yq7r(5t+1aAt+1) | S5t =5, At = 3]

For a given state s, and action a at time t, with the discount factor y.

e At the core of DON are Q-value , where Q represents the discounted

future rewards for a particular action from a particular state

e DQN uses Deep Neural Networks (DNN) to estimate these Q-values when

the state space becomes too large for simple lookup table approaches

*Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto
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http://www-anw.cs.umass.edu/~barto/

Code Coverage — DQN Results

e We applied DQN - The RL agent without any prior ' Performance with random policy
knowledge learns by trial and error that i should be in
(1,25), jin (25,50) and k in (50,75) o — Random
] ] ] -S VerifAl-RL
® The results can be seen on the right with clears points g 30
where the agents performance goes to the next level g
2 2
L : : O
e Periodic exploration ( € > 0 ) leads to higher 5
. <
cumulative future reward o
()]
100% _ o 1.5
(®)]
80% | g
1.0
% 60% _| é
Optimal . —
action 40% e - ’ 0.5
= 0 G v e My A A\t Ny
20% |
0.0
0% .| . . . . 0 500 1000 1500 2000 2500 3000 3500
1 250 500 750 1000 episode no

Steps
*Source: Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto
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DQN for Design Verification

AN

® Use RL to drive the input to a Simulator with

a set of controllable knobs

e Optimize a given metric or multiple metrics
(Coverage, FIFO Depths, VB Count) that

depend on the knobs settings
® Modeled as Markov Decision Process (MDP)

e Use a DQN (Deep Q-Network) to train an RL
agent to to explore the action space and learn

the Q-values

e Pre-fill experience buffer to speed up learning
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Test Case #1 - MESI Cache Controller*

e MESI Cache Controller- Quadcore CPU design — SIS TestBenen
- 4-way set associative cache of size 256 kB (one for each CPU) s Main Memory
. Seed
- 4-bit offset
- 12-bit index : | |
- 16-bit tag Stimuus Matrix

e Knobs (Input to testbench to generate constrained random sequences) t111

- 16 for distribution of commands (4 for each CPU -(broadcast vs single read/ write) Tttt 1
- 12 for distribution of freedom of address (3 for each CPU - tag/ index. offset) v + v
«»| Master 0 v — A >
e Output captured from testbench e M;LI ] .
- FIFO depth for each CPU at each cycle T | e
+ | Master 2 »
{ G0a| ] ¥
’ L Pt Pt Ngp| Master 3 —
- Increase FIFO depths across all CPU’s b A ditesE WS Dats, Contrals
——»- Read Data
- Coherency bus (snooping) Validation

* https://opencores.org/project/mesi_isc

accellera BVEDON
EUROPE

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021
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The RL Algorithm for Test Case #1

DV Environment

e |nitial Dataset consist of a set of random knobs and their C

CPU cmds
Rd addr1

average FIFO depths Wr addr2

NOP

BrdCast addr3

® This dataset is fed to a DNN which learns the function that

maps the knob settings to the FIFO depth Ciwdesionovo vt rur | crus :

: I 1 1 :

1 A 4 \ 4 1

e The DNN, once trained, can be used to generate new knob : | | | | v\
settings and prediction for the target variable G . : I/l Monitors

. . i | r

e Once trained, the DNN simulates the output for any new | | | | | i

. . 1 Cache0 Cacvhel Cacvhez CaJme3 |

unseen setting of input knobs — temmmmoeeees l ------ l ----- l ------ T '

C Checker)
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Test Case #1- Simulation Setup - List of Knobs

Input Signal Values Explanation of type of control
Initial Random Mbus_cmd_cpuO Valid values — Knob: Distribution of commands
Knob Settings (3-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,

RD_BROAD
Knob: Distribution of commands

g Simulation Mbus_cmd_cpu1 Valid values —
Results (3-bit) 000 to 100
| - Knob Settings

Weight on commands - NOP, WR, RD, WR_BORAD,
RD_BROAD
| Mbus_cmd_cpu?2 Valid values — Knob: Distribution of commands
Knob Settings Reward - (32-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,
- For Next Sims Avg FIFO depth RD_BROAD
Mbus_cmd_cpu3 Valid values — Knob: Distribution of commands
(32-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,
- g RD_BROAD
Mbus_addr_cpu0 Valid range — Index bits are [15:4] for 256kB cache with 16 bytes
(32-bit) 0 to 32’hFFFF_FFFF cache block size and 4-way set associative.
Simulation and DQN Setup tag = [31:16], index = [15:4], offset = [3:0]
Knob: set individual freedom for each of them.
Mbus_addr_cpu1 Valid range — Knob: set individual freedom for each of them.
(32-bit) 0 to 32’hFFFF_FFFF
Commands are entered into FIFO when , —
Mbus_addr_cpu2 Valid range — Knob: set individual freedom for each of them.

two or more incoming non-NOP (32-bit)
requests are to the same address

0 to 32’hFFFF_FFFF

Mbus_addr_cpu3 Valid range —
(32-bit) 0 to 32’hFFFF_FFFF

Knob: set individual freedom for each of them.
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Avg FIFO Depth

Running average of previous 100 FIFO Depths

Test Case#1 Results

Baseline: Simulation with Random Inputs
—— random
91 — RL
40
8 - g30
5
520
7- Learning Rate %0
6 1.0 2.0 3.0
avg fifo depth
5 -
After using VerifAl Optimizer: Iteration 1
. 50 , Distribution Shifted to the right
25 ’
31 820
g5
7 4 g10
5
11 . . . ’ ’ 6.0 7.0 8.0
0 200 400 600 800 1000 avg fifo depth
Episodes
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Score: 40.40

Average FIFO Depths after 2 iterations

After using VerifAl Optimizer: Iteration 2 Score: 143.80

|
4.0 5.0 50
40 Distribution Shifted Further to the right

(V]
530
Score: 116.20 §20

[e]
10

6
avg fifo depth

10.C
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Test Case#t2 - RISCV CVAG6 (Ariane)

e RISC-V OpenSource design

. . Frontend ID I EX Commit
- 64-bit Ariane processor core E——— wodeise 000 Ws — £
. . et Architechtural 5 =
- 6-stage pipeline L e IR o5 | Commit s S
- In-order issue, out-of-order write-back D— K commit -
[me] | £
A g gg
y 32 1 L N P~
e Data cache (D$) victim buffer (VB) 1 Re- I
aligner Scoreboard ot LSU | L1 Write
- Data cache stores recently accessed data from memory . e
. - . . c DTLB
- New cache allocations cause existing lines to be evicted gl o
. . . e e CSR T Compressed o | & ALU g
- Modified evicted lines are held in Victim buffer Write 2w Decoder reatie | |2 5
. . . g S
- Cache Size — 2 MB, Tag — 44 bit, Index — 12 bit B | Read 8
Eps _|§ Multiplier I— N Reg.ﬁle
mt::: npe Decoder . || Write
e Design complexity of VB — Branch Unit
- Cache line eviction and memory write-back is complex
- Subsequent CPU core accesses to VB : %
- Snoop accesses to VB : |y 3 w
. . 2 E 3>
- VB full requires back-pressure for cache refills PC § S 2 S Exception
Select
e Output captured from testbench e~ t@ % g
- average number of victims and percent of hitting of maximum of VB £
Frontend Backend

® Goal
-Increase Victim-Buffer Counts
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Test Case #2- Simulation Setup - List of Knobs

Input Signal Values Explanation of type of control
Initial Random wt_load_store jump_br | Valid values — 0 to 100 Knob: Distribution of commands
Knob Settings | anch Weight on commands - (LD/ ST/ JMP/ BRANCH vs

Simulation other non-complex arithmetic instructions)

DI wt_other_ins valid values — 0 to 100
outputs
) - wt_loads Valid values — 0 to 100 Knob: Distribution of commands
Knob Settings Generator

Individual Weight on commands between the knob -
- For Next Sims

Reward wt_stores Valid values — 0 to 100 wt load_store_jump_branch
—I—I - Victim
- count wt_jumps Valid values — 0 to 100
e
wt_branches Valid values — 0 to 100
. . tag range Validrange— Oto 7 Knob: 0 indicates minimum freedom of tag, 7
Simulation and DQN Setup indicates maximum freedom of tag
index range Valid range—-0to 7 Knob: 0 indicates minimum freedom of index, 7
RL Agent indicates maximum freedom of index
. . . . Tag Range Value Index Range Value
® learns each iteration: which knobs impact A0 da F b 2h0—12h2
VB occupancy 1 44'h 0 - 44'h FF 1 12h0-12h 4
. . 'h 0 — 44’ 2 12h0-12h 8
e Adjust knob settings for IG for next 2 44h0-a4h FFF
. . 3 44'h 0 — 44'h FFFF 3 12h0-12hA
Iteration 4 44'h 0 — 44'h FFFFF 4 12h0-12h C
® Learns to generate settings which increase 5 44'h 0 - 44'h FFFFFFF 5 12h0-12hF
victim counts 6 44’h 0 — 44’'h FFFFFFFFF 6 12h0-12"h FF
7 44’h 0 — 44'h FFFFFFFFFFF 7 12’h 0 - 12’h FFF
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Test Case#2 Results

e Average VB occupancy increases from
0.95 to 1.6 after just three iterations,
gain of approximately 55%

e RL Agent identifies salient knobs (inputs
to Google IG) and exploits them

Average number of Victims

18

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Average Victims

== random knobs

== ML generated knobs

2 3

Number of Iterations
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Test Case#2 - Iteration wise results

Histogram of Avg_no_of victims Histogram of Avg_no_of_wvictims
250 + ' _No_9ol 250 + o9 ELEA - lteration-wise Avg_no_of_victims
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Aog R0 b vicime Avg_no_of_victims Iteration
— Histogram of Percent_of_hitting_max _ - Histogram of Percent_of_hitting_max o Iteration-wise Percent_of_hitting_max
i 50 1 . 2. L
f : ~®- inzone's knobs
\ E random knobs
g 1 i g 207 : 81
3 ; g : Mean: 5.932 =
5 | Mean: 5.836 5 E,
3 1501 S 150 1 g 61 o=
3 s £ PSSP
E z fl 7 4
%’ 100 1 :; 100 4 ;. a
2 I § |,
p < o
=2 504 [ a
S 501 21
0+ .ll ¥ ¥ ¥ Y s 0 -llII 0
g &0 € 0no g (3 17 & + u T T U ' v v L) hj v
e 00 25 50 75 100 125 150 175 200 0 1 2 3 g 5

P '
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Future Direction - ML for DV

® Reinforcement Learning Algorithms to handle large action spaces
(large number of knobs) is an active area of research

® DDPG (Deep Deterministic Policy Gradient)
e Soft Actor Critic (A3C)

® Explore Statistical Algorithms
e Contextual Bandit

® |n simulation RL (online-RL)
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Conclusion

® \We have demonstrated the value of using Machine Learning
techniques on industrial designs to do significantly better than

constrained random methods (UVM etc..)

e Using RL for DV can save months of verification resource for

Coverage Improvement and Early Bug Finding

® DNN’s provide a mechanism to fit non-linear functions that can

mimic complex behaviors - even of a simulator

SYSTEMS INITIATIVE



