(2021

DESIGN AND VERIEICATION™

DVOCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27/, 2021

Optimizing Design Verification Using Machine
Learning - Doing Better than Random

William Hughes™, Sandeep Srinivasan™® , Rohit Suvarna*,
Maithilee Kulkarni++

* VerifAl Inc, ++ Xilinx Inc. accellera

SYSTEMS INITIATIVE

Agenda

® Design Verification Challenges

® Code Coverage Example - Doing better than Random
® Deep-Q-Learning for Code Coverage Example

® Deep-Q-Learning for Design Verification

e Test Case #1 - MESI Cache Controller Design

® Test Case #2 - RISCV CVAG6 (Ariane) Future Direction
e Future Direction - ML for DV

® Conclusion

MS INITIATIVE

Verification Complexity Growing Rapidly

Transistors,
log scale Cost ($M)
107 100

=== Transistors per chip, 000 || Design Cost

e Total HW Cost . Verification Cost
10° 75

**Source: Page 3 Design Defense Advanced Research Projects Agency

10° 50

10 25

T P SN i EE BN NN BN EEE
1980 85 90 95 2000 05 10 15
Technology Node 180 130 65 45 32 22 14

MOSIS

Figure 1. INustration of the rapid increase in resources required for physical design and verification a:
Moore's Law has progressed.

Hardware

* 4 Verification Engineers per Design Engineer*
* Verification costs > 55% of Design Cost & Rising*
* Hard bugs found late in the Project

Software

* 1.5 Verification Engineers per Developer
» Security bugs found late in Production

*Source : Wilson research group study 2020, Siemens EDA

' 2027

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/

Verification Challenges

Y L. fectienessinfinding Bugs >

Random Tests Random, Feedback Random Directed Tests

oo Humentfot >

Can we do better than Random and humans in lesser time ?

< A New Approach is Needed >
2021
accel/era DESIGN AND VERIFICATION

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Code Coverage — Doing better than Random

for i in range(num_iterations):

depth = 0

i,j,k =90,0,0

i = random.randint(1,100)

if i in range(1,26):
depth = 1
j = random.randint(1,100)
if j in range(26,51):

depth = 2

k = random.randint(1,100)
if k in range(51,76):
depth = 3

else: \
depth = 2

k = 0 Goal: Learn how to

else: 3 reach max code depth
‘jjegtg =1 consistently
else: => Find best {i,j, k}
depth = 0
i=20

e 3 |levels in a nested ‘if’ condition, flows to lower
depths only if the values of {i,j k} satisfy a certain
range constraint

e Depth =3 is a proxy for a hard to reach condition

or state

e Can we train a Neural Network to learn to
produce the best {i,j,k} values without exhaustive
random combinations (fuzzing™) ?

e How does random selection of {i,j,k} perform?

Total number of States in this example = 38 ~= 6561
Total Number of Atoms in the Universe =~ 1082 ~= 2287
Total number of Statesina GO game = 10172 ~= 2602

Total Number States in a Small Microprocessor ~ ~= 22million

*The term "fuzz" originates from a fall 1988 class project(2! in the graduate Advanced Operating Systems class (CS736), taught by Prof. Barton Miller at the University of Wisconsin

SYSTEMS INITIATIVE

2021
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

https://en.wikipedia.org/wiki/Fuzzing#cite_note-fuzz-cs736-2

Code Coverage — Deep-Q-Learning (DQN)

Action a
| l
Agent Environment
t T Reward r :A r' |
State s L s’

e Q-Learning is a Reinforcement Learning Algorithm (RL)*

e In Q-Learning the goal is to maximize the cumulative discounted reward
%(5, 3) =Ex [Rt+1 + ’Yq7r(5t+1aAt+1) | S5t =5, At = 3]

For a given state s, and action a at time t, with the discount factor y.

e At the core of DON are Q-value , where Q represents the discounted

future rewards for a particular action from a particular state

e DQN uses Deep Neural Networks (DNN) to estimate these Q-values when

the state space becomes too large for simple lookup table approaches

*Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto

SYSTEMS INITIATIVE

202]
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

http://incompleteideas.net/index.html
http://www-anw.cs.umass.edu/~barto/

Code Coverage — DQN Results

e We applied DQN - The RL agent without any prior ' Performance with random policy
knowledge learns by trial and error that i should be in
(1,25), jin (25,50) and k in (50,75) o — Random
]]] -S VerifAl-RL
® The results can be seen on the right with clears points g 30
where the agents performance goes to the next level g
2 2
L : : O
e Periodic exploration (€ > 0) leads to higher 5
. <
cumulative future reward o
()]
100% _ o 1.5
(®)]
80% | g
1.0
% 60% _| é
Optimal . —
action 40% e - ’ 0.5
= 0 G v e My A A\t Ny
20% |
0.0
0% .| 0 500 1000 1500 2000 2500 3000 3500
1 250 500 750 1000 episode no

Steps
*Source: Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto

accellera BVEDON
EUROPE

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

http://incompleteideas.net/index.html
http://www-anw.cs.umass.edu/~barto/

DQN for Design Verification

AN

® Use RL to drive the input to a Simulator with

a set of controllable knobs

e Optimize a given metric or multiple metrics
(Coverage, FIFO Depths, VB Count) that

depend on the knobs settings
® Modeled as Markov Decision Process (MDP)

e Use a DQN (Deep Q-Network) to train an RL
agent to to explore the action space and learn

the Q-values

e Pre-fill experience buffer to speed up learning

2021
DESIGN AND VERIEICATION ™

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Test Case #1 - MESI Cache Controller*

e MESI Cache Controller- Quadcore CPU design — SIS TestBenen
- 4-way set associative cache of size 256 kB (one for each CPU) s Main Memory
. Seed
- 4-bit offset
- 12-bit index : | |
- 16-bit tag Stimuus Matrix

e Knobs (Input to testbench to generate constrained random sequences) t111

- 16 for distribution of commands (4 for each CPU -(broadcast vs single read/ write) Tttt 1
- 12 for distribution of freedom of address (3 for each CPU - tag/ index. offset) v + v
«»| Master 0 v — A >
e Output captured from testbench e M;LI] .
- FIFO depth for each CPU at each cycle T | e
+ | Master 2 »
{ G0a|] ¥
’ L Pt Pt Ngp| Master 3 —
- Increase FIFO depths across all CPU’s b A ditesE WS Dats, Contrals
——»- Read Data
- Coherency bus (snooping) Validation

* https://opencores.org/project/mesi_isc

accellera BVEDON
EUROPE

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

https://opencores.org/project/mesi_isc

The RL Algorithm for Test Case #1

DV Environment

e |nitial Dataset consist of a set of random knobs and their C

CPU cmds
Rd addr1

average FIFO depths Wr addr2

NOP

BrdCast addr3

® This dataset is fed to a DNN which learns the function that

maps the knob settings to the FIFO depth Ciwdesionovo vt rur | crus :

: I 1 1 :

1 A 4 \ 4 1

e The DNN, once trained, can be used to generate new knob : | | | | v\
settings and prediction for the target variable G . : I/l Monitors

. . i | r

e Once trained, the DNN simulates the output for any new | | | | | i

. . 1 Cache0 Cacvhel Cacvhez CaJme3 |

unseen setting of input knobs — temmmmoeeees l ------ l ----- l ------ T '

C Checker)
: 2021
EUROPE

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Test Case #1- Simulation Setup - List of Knobs

Input Signal Values Explanation of type of control
Initial Random Mbus_cmd_cpuO Valid values — Knob: Distribution of commands
Knob Settings (3-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,

RD_BROAD
Knob: Distribution of commands

g Simulation Mbus_cmd_cpu1 Valid values —
Results (3-bit) 000 to 100
| - Knob Settings

Weight on commands - NOP, WR, RD, WR_BORAD,
RD_BROAD
| Mbus_cmd_cpu?2 Valid values — Knob: Distribution of commands
Knob Settings Reward - (32-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,
- For Next Sims Avg FIFO depth RD_BROAD
Mbus_cmd_cpu3 Valid values — Knob: Distribution of commands
(32-bit) 000 to 100 Weight on commands - NOP, WR, RD, WR_BORAD,
- g RD_BROAD
Mbus_addr_cpu0 Valid range — Index bits are [15:4] for 256kB cache with 16 bytes
(32-bit) 0 to 32’hFFFF_FFFF cache block size and 4-way set associative.
Simulation and DQN Setup tag = [31:16], index = [15:4], offset = [3:0]
Knob: set individual freedom for each of them.
Mbus_addr_cpu1 Valid range — Knob: set individual freedom for each of them.
(32-bit) 0 to 32’hFFFF_FFFF
Commands are entered into FIFO when , —
Mbus_addr_cpu2 Valid range — Knob: set individual freedom for each of them.

two or more incoming non-NOP (32-bit)
requests are to the same address

0 to 32’hFFFF_FFFF

Mbus_addr_cpu3 Valid range —
(32-bit) 0 to 32’hFFFF_FFFF

Knob: set individual freedom for each of them.

2021
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Avg FIFO Depth

Running average of previous 100 FIFO Depths

Test Case#1 Results

Baseline: Simulation with Random Inputs
—— random
91 — RL
40
8 - g30
5
520
7- Learning Rate %0
6 1.0 2.0 3.0
avg fifo depth
5 -
After using VerifAl Optimizer: Iteration 1
. 50 , Distribution Shifted to the right
25 ’
31 820
g5
7 4 g10
5
11 . . . ’ ’ 6.0 7.0 8.0
0 200 400 600 800 1000 avg fifo depth
Episodes

SYSTEMS INITIATIVE

P Sl LT SOTeIS -

Score: 40.40

Average FIFO Depths after 2 iterations

After using VerifAl Optimizer: Iteration 2 Score: 143.80

|
4.0 5.0 50
40 Distribution Shifted Further to the right

(V]
530
Score: 116.20 §20

[e]
10

6
avg fifo depth

10.C

2021
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-2 (o)=] |

Test Case#t2 - RISCV CVAG6 (Ariane)

e RISC-V OpenSource design

. . Frontend ID I EX Commit
- 64-bit Ariane processor core E——— wodeise 000 Ws — £
. . et Architechtural 5 =
- 6-stage pipeline L e IR o5 | Commit s S
- In-order issue, out-of-order write-back D— K commit -
[me] | £
A g gg
y 32 1 L N P~
e Data cache (D$) victim buffer (VB) 1 Re- I
aligner Scoreboard ot LSU | L1 Write
- Data cache stores recently accessed data from memory . e
. - . . c DTLB
- New cache allocations cause existing lines to be evicted gl o
. . . e e CSR T Compressed o | & ALU g
- Modified evicted lines are held in Victim buffer Write 2w Decoder reatie | |2 5
. . . g S
- Cache Size — 2 MB, Tag — 44 bit, Index — 12 bit B | Read 8
Eps _|§ Multiplier I— N Reg.ﬁle
mt::: npe Decoder . || Write
e Design complexity of VB — Branch Unit
- Cache line eviction and memory write-back is complex
- Subsequent CPU core accesses to VB : %
- Snoop accesses to VB : |y 3 w
. . 2 E 3>
- VB full requires back-pressure for cache refills PC § S 2 S Exception
Select
e Output captured from testbench e~ t@ % g
- average number of victims and percent of hitting of maximum of VB £
Frontend Backend

® Goal
-Increase Victim-Buffer Counts

: 2021

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Test Case #2- Simulation Setup - List of Knobs

Input Signal Values Explanation of type of control
Initial Random wt_load_store jump_br | Valid values — 0 to 100 Knob: Distribution of commands
Knob Settings | anch Weight on commands - (LD/ ST/ JMP/ BRANCH vs

Simulation other non-complex arithmetic instructions)

DI wt_other_ins valid values — 0 to 100
outputs
) - wt_loads Valid values — 0 to 100 Knob: Distribution of commands
Knob Settings Generator

Individual Weight on commands between the knob -
- For Next Sims

Reward wt_stores Valid values — 0 to 100 wt load_store_jump_branch
—I—I - Victim
- count wt_jumps Valid values — 0 to 100
e
wt_branches Valid values — 0 to 100
. . tag range Validrange— Oto 7 Knob: 0 indicates minimum freedom of tag, 7
Simulation and DQN Setup indicates maximum freedom of tag
index range Valid range—-0to 7 Knob: 0 indicates minimum freedom of index, 7
RL Agent indicates maximum freedom of index
. . . . Tag Range Value Index Range Value
® learns each iteration: which knobs impact A0 da F b 2h0—12h2
VB occupancy 1 44'h 0 - 44'h FF 1 12h0-12h 4
. . 'h 0 — 44’ 2 12h0-12h 8
e Adjust knob settings for IG for next 2 44h0-a4h FFF
. . 3 44'h 0 — 44'h FFFF 3 12h0-12hA
Iteration 4 44'h 0 — 44'h FFFFF 4 12h0-12h C
® Learns to generate settings which increase 5 44'h 0 - 44'h FFFFFFF 5 12h0-12hF
victim counts 6 44’h 0 — 44’'h FFFFFFFFF 6 12h0-12"h FF
7 44’h 0 — 44'h FFFFFFFFFFF 7 12’h 0 - 12’h FFF

accellera BVEDON
EUROPE

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Test Case#2 Results

e Average VB occupancy increases from
0.95 to 1.6 after just three iterations,
gain of approximately 55%

e RL Agent identifies salient knobs (inputs
to Google IG) and exploits them

Average number of Victims

18

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Average Victims

== random knobs

== ML generated knobs

2 3

Number of Iterations

2021
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Test Case#2 - Iteration wise results

Histogram of Avg_no_of victims Histogram of Avg_no_of_wvictims
250 + ' _No_9ol 250 + o9 ELEA - lteration-wise Avg_no_of_victims
®- inzone's knobs
175 1 random knobs
o 200 Mean: 1.532 o 2004
I °
g $ Mean: 1557 150 P ey o
|~ - “ Py
§ 150 ; 150 4 g 125
¥ 2 5
4) 5 1001 4
* | |
T 100 T 100 4 =
g g 100 =
8 < g‘
- < <
5 S0 14 - e 4 0.50 1
0.25
0 T T 0 . ,
0 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 = 1 ’2 E 4 5
Aog R0 b vicime Avg_no_of_victims Iteration
— Histogram of Percent_of_hitting_max _ - Histogram of Percent_of_hitting_max o Iteration-wise Percent_of_hitting_max
i 50 1 . 2. L
f : ~®- inzone's knobs
\ E random knobs
g 1 i g 207 : 81
3 ; g : Mean: 5.932 =
5 | Mean: 5.836 5 E,
3 1501 S 150 1 g 61 o=
3 s £ PSSP
E z fl 7 4
%’ 100 1 :; 100 4 ;. a
2 I § |,
p < o
=2 504 [a
S 501 21
0+ .ll ¥ ¥ ¥ Y s 0 -llII 0
g &0 € 0no g (3 17 & + u T T U ' v v L) hj v
e 00 25 50 75 100 125 150 175 200 0 1 2 3 g 5

P '
ercent_of_hitting_max Percent_of hitting_max Iteration

202]
DESIGN AND VERIEICATION ™

accellera SVEDN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Future Direction - ML for DV

® Reinforcement Learning Algorithms to handle large action spaces
(large number of knobs) is an active area of research

® DDPG (Deep Deterministic Policy Gradient)
e Soft Actor Critic (A3C)

® Explore Statistical Algorithms
e Contextual Bandit

® |n simulation RL (online-RL)

SYSTEMS INITIATIVE

Conclusion

® \We have demonstrated the value of using Machine Learning
techniques on industrial designs to do significantly better than

constrained random methods (UVM etc..)

e Using RL for DV can save months of verification resource for

Coverage Improvement and Early Bug Finding

® DNN’s provide a mechanism to fit non-linear functions that can

mimic complex behaviors - even of a simulator

SYSTEMS INITIATIVE

